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Abstract

The detection of groups of parallel lines is important in applications such as form pro-
cessing and text (handwriting) extraction in rule lined paper. These tasks can be very
challenging in degraded documents where the lines are severely broken. In this paper we
propose a novel model-based method which incorporates high level context to detect these
lines. After preprocessing and skew correction, we use trained Hidden Markov Models
(HMM) to locate the optimal positions of all lines simultaneously, based on the Viterbi
decoding. The algorithm is trainable, therefore, it can easily be adapted to different ap-
plication scenarios. The experiments conducted on known form processing and rule line
detection show our method is robust, and achieved better results than other widely used
line detection methods, such as the Hough transform, projection or vectorization-based
methods.
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Figure 1: Line detection results for (a) a bank deposit form and (d) a rule lined document;
(b) and (e) are line detection results using the DSCC method; (c¢) and (f) are our model
based line detection results.

1 Introduction

The detection of groups of parallel lines is of particular interest in some applications. Fig.
la shows an example of a form document with a group of horizontal and vertical parallel
lines respectively. These lines provide crucial information for model-based form analysis
and processing, such as form identification, form registration, content understanding, etc.
Another example is a rule lined document shown in Fig. 1d. These lines are originally
printed on the paper to guide users’ writing. After digitization they will, however, touch
text and cause problems for further document analysis such as segmentation and recog-
nition. It is important that those lines can be detected and removed before we feed the
text to an Optical Character Recognition (OCR) engine.

Many line detection algorithms have been presented in the literature [2,5,13,21,33,35].
They can work well on relatively clean documents with solid or mildly broken lines, but
the performance will be significantly deteriorated if lines are severely broken due to the
low image quality, or mix, touch, and/or overlap with text. Figs. 1b and le show the
DSCC (Directional Singly Connected Chain) based line detection results for the form
and rule lined documents. We can see only a few lines are partially detected in both
cases due to severe brokenness, and a long horizontal line is falsely detected on the form
document (Fig. 1b) since several horizontal strokes of Chinese characters happen to be
close enough and lie on the same line. It is very difficult, if not impossible, to reliably
detect these lines individually.

To handle these problems the context is often required to refine the initial detection.
For example, in form processing most form cells are rectangular; in known form processing
the number of lines and the gaps among these lines can be used as a priori knowledge



and stored as references in form templates. These ideas have been presented in previous
work to improve detection accuracy and reduce false alarms [1,9,30,35]. But the usage of
the priori knowledge in the above applications is in an ad hoc way and lacks a systematic
representation.

In this paper we propose a model-based method which incorporates context to op-
timally detect parallel lines systematically. Under the model, lines are detected by a
Hidden Markov Model (HMM) decoding process which can determine the positions of all
lines simultaneously. Rather than detecting lines directly on original images [2,21, 35],
we use a DSCC-based scheme to filter text as a preprocessing step so the interference
with text can be minimized. We then use a coarse-to-fine approach to estimate the skew
angle of the document. After deskewing the document we perform horizontal and/or ver-
tical projections. Rather than simply treating the peaks of the projection profile as the
line positions [2,21], we model the projection profile with a HMM model so the context
among these lines can be incorporated. The Viterbi algorithm is then used to search the
optimal positions of these lines simultaneously from the projection profile. The model
is trainable, therefore, it can be easily adapted for different applications. Two different
detection scenarios (known form processing and rule line detection) presented in the pa-
per illustrate the strength and advantage of our method. The experimental results show
our method is robust, and can detect lines with high accuracy and low false alarms in
degraded documents.

The remainder of this paper is organized as follows. In the next section we briefly
survey the literature of line detection and form processing, followed by preprocessing in
Section 3. Section 4 presents our HMM-based line detection algorithm in detail. Two
application scenarios, known form processing and rule line detection, are described in
Section 5. We demonstrate the robustness of our method with quantitative evaluation
experiments in Section 6. The paper concludes with a brief summary and a discussion
of the future work.

2 Related Work

2.1 Line Detection

Line detection is widely used in table detection and interpretation [2,33,35], engineering
graph interpretation [4], and bank check/invoice processing [1,30]. The algorithms pre-
sented can be broadly divided into two types: Hough transform based and vectorization
based [24]. The Hough transform converts the global pattern detection problem in an
image space to a local pattern (ideally a point) detection problem in a transformed pa-
rameter space [11,13]. To detect a straight line, each black pixel (z,y) in an image space
is transformed into a sinusoidal curve in the Hough parameter space

p = wcosf + ysinf (1)

After transformation, collinear points (z;, y;) in the image space intersect at a point (p, )
in the Hough parameter space. Therefore, a peak in the transformed space provides strong
evidence that a corresponding straight line exists in the image. The Hough transform
can detect dashed and mildly broken lines. However, it is very time consuming. To
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reduce the computational cost, a projection based method is proposed in [21] to detect
form frame lines by limiting the search orientations since usually only horizontal and/or
vertical lines exist in form documents. The method deskews the document first, and
then detects the peaks of the horizontal and vertical projection profiles as lines. It can
be viewed as a special case of the Hough transform by searching 6 only around 0° and
90°. The method will fail if the projection of a line does not form a peak on the profile
when it mixes with text, or the estimated skew angle is not accurate enough, or the lines
are too short or severely broken. Chen and Lee proposed the strip projection method to
alleviate this problem since lines are more likely to form peaks on the projection profile
in a small region [2]. For horizontal line detection, they first divide an image into several
vertical strips with equal width, and then perform horizontal projection in each strip.
The detected co-linear line segments in each strip are linked to form a whole line.

Vectorization based line detection algorithms extract vectors from an image first, and
then merge vectors into lines [3,24]. A vector can be defined as a collection of pixels
which satisfy the pre-defined criterion. It can be a chain of pixels, a line segment, or an
arc. Using vectors instead of pixels can significantly reduce the number of elements to be
processed, typically from 100:1 to 10:1. The major difference among existing vectorization
based algorithms is the definition and extraction of vectors, while the merging process is
often rule-based and very similar for different algorithms.

Thinning is a common method to extract vectors. It uses an iterative boundary ero-
sion process to remove outer pixels until only a skeleton of pixel chains remains [29]. It
can maintain connectivity, but also tends to create noisy junctions at corners, intersec-
tions, and branches. Medial line methods, on the other hand, extract image contours
as pixel chains first. Then the middle points of the perpendicular lines, which project
from one side of the contour to the other, form a medial line [14]. The methods may
miss pairs of contour lines at branches, so postprocessing is often required to reduce this
distortion [10]. The result of either thinning or medial line methods is a chain of pixels,
and a line can be detected by approximating the pixel chain. Recently, the Sparse Pizel
Vectorization (SPV) algorithm, proposed by Dori et al. [5], does not use contours to get
medial lines. It traces the medial axis points of consecutive horizontal or vertical pixel
runs until some constraints are violated. Each continuous trace is a vector, representing
a bar or an arc. SPV often achieves better vectorization results than other medial line
methods, but the vector extraction is complicate, and often needs postprocessing to refine
the results.

As a run-length based approach, Block Adjacency Graph (BAG) is a generic structure
to represent an image [33,34]. BAG is defined as G(V, F), where N is a set of block
nodes and F is a set of edges indicating the connection between two nodes. Each node is
a block which contains either one or several horizontal run lengths adjacently connected
in vertical direction and aligned on both left and right sides within a given tolerance. A
Line is detected by searching a connected sub-graph in the BAG with large longitude. As
a generic image presentation method, a BAG does not consider the special characteristics
of a straight line. Therefore, it can only detect unbroken lines within a small skew range
(< 5).

Recently Zheng et al. presented a vectorization based algorithm called Directional
Singly Connected Chain (DSCC) method [35]. A DSCC is a chain of run-lengths which
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are singly connected. Each DSCC represents a line segment and multiple non-overlapped
DSCCs are merged into a line, based on pre-defined rules. The basic characteristic of
a line is that it has only one running direction. When a junction is encountered, the
merging process stops and a new DSCC is generated.

2.2 Model-Based Form Processing

Millions of form documents, such as health insurance forms, checks, and bank slips, are
being processed everyday. Some systems have been developed to process these forms
automatically or semi-automatically [1,8,30]. Form processing can be categorized as
unknown and known form processing [1]. Unknown form processing assumes no a priori
knowledge from the input forms, and extracts all information based on low level image
analysis. Errors are often expected and user assistance is required. Known form process-
ing, on the other hand, is designed to process a pre-defined set of forms, where a priori
information can be stored as templates in the database to guide the later processing. It
is widely used in banks, post offices, and tax offices where the types of forms can be pre-
defined. For an input form, the system first selects the template which matches it best
(form identification). Then some anchors (such as specific marks, form frame lines, etc.)
are detected for the registration so the variations produced by scanning (e.g. rotation,
translation, and scaling) can be compensated. Finally the identified template is used to
guide the system to recognize interested fields on the form (different OCR engines can
be used for different fields), and output the recognition results to a database. Though
special anchors may be available to facilitate the form identification and registration for
specially designed forms, more general approaches use features related to frame lines ex-
plicitly or implicitly, such as frame lines [1,30-32], form cells [22], and the cross points of
frame lines [6], etc., for form identification and registration. Robust detection of frame
lines is crucial in these approaches.

For line-based image registration, model-based approaches are often used to find the
correspondence between the detected lines and those stored in the form template [1,8,30].
In [30], Tang and Suen first detect an anchor line, from which the approximate locations
of other lines can be determined based on the form template. Then the system refines
the detection by searching in areas around these locations. The correspondence between
the detected anchor line and those in the form template may not be unique. Cesarini
et al. proposed a hypothesis and verification paradigm to solve the correspondence and
detection simultaneously [1]. A hypothesis is generated for each correspondence, and then
the system searches the expected lines in the surrounding areas to verify the hypothesis.
One shortcoming of the approach is that the hypothesis and verification need to be defined
for different types of forms. The false alarms are reduced due to the use of templates,
but miss detection of broken lines is reported [30].

3 Preprocessing

The purpose of preprocessing is two-fold: first we filter out text strokes so their effect
can be diminished; second, we deskew the document so the parallel lines can be oriented
horizontally or vertically.
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Figure 2: The definition of a horizontal DSCC. (a) An example of DSCCs; (b) extracted
DSCCs (represented in red color) where a text stroke crosses a line.

3.1 Text Filtering Based on DSCC
3.1.1 Definition of DSCC

We define two types of DSCCs: the horizontal one and the vertical one, which are used
to detect horizontal and vertical frame lines respectively in [35]. Take the horizontal
DSCC for example: a horizontal DSCC (), consists of a black pixel run-length array
R\Ry---R,,, where R; is a vertical run-length with one pixel width

z,y) = 1,for v = x;,y € [ysi, ye;
Ri(xi,ysi,yei):{(x,y) p(,y) Y € [ysi, yei] } (2)

and p(x;,ys; — 1) = p(z;, ye; +1) =0

where p(z,y) is the value of pixel (x,y) with 1 representing black pixels, and 0 repre-
senting white pixels; x;, ys; and ye; designate x, starting y, and ending y coordinates
of R; respectively. Two neighboring run-lengths R; and R;,; are merged into a DSCC
chain if they are singly connected in the horizontal direction. As shown in Fig. 2, the
single connection means that at each side of R;(1 < ¢ < m), there is one and only one
connected run-length. In this example, R1 Ry - R7, Ri1R12R13, Rg, Ry, R, R4 and
Ry5 are extracted as DSCCs. The definition of vertical singly connected chain C, is very
similar to the horizontal one.

The most important property of a line is the single connection along its running
direction. An ideal line consists of only one DSCC. A real line often consists of multiple
non-overlapping DSCCs. Fig. 2b shows an example of extracted DSCCs (represented in
red color) of a text stroke crossing a line. We can see that the line is broken into several
line segments (DSCCs) on the touching area. If the image quality is reasonable, then a
line can be detected by merging those DSCCs with the similar orientation [35]. In our
case we use it to remove text and preserve line segments.

3.1.2 Filtering

As shown in Fig. 2b, a DSCC can be a text stroke or a line segment. We observed that a
line segment often has a smaller variation from the desired orientation and larger aspect
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Figure 3: Text filtering using DSCC. (a) A document image with rule lines; (b) result
of text filtering in horizontal direction; (c¢) a form document image; (d) result of text
filtering in horizontal direction; (e) result of text filtering in vertical direction.

ratio. We use an ellipse to model the shape of a DSCC, and calculate the orientation 6,
the first and second axes a and b of each DSCC as follows

fpg =Y > (= Z)"(y — §)U(x,y) (3)

2
0 = 0.5tan"" <¢> (4)
H20 — Ho2
" 2[00 + pro2 + \/(M2o — fio2)? + 4pd ] (5)
Hoo
- 2[ 20 + 1102 — \/(Mzo — 102)? + 4p3] (6)
Moo

where I(z,y) represents a pixel in the DSCC, z and g are the means of z and y coor-
dinates, and u,, is the central moment. For horizontal line detection, we only preserve
those DSCCs with either very small sizes (max{a, b} < T7), or large aspect ratios within
a specified orientation angle (a/b > T, and 0 € [—45°,45°]). T} and Ty are thresholds
determined experimentally. The first condition preserves small DSCCs which can be
parts of a broken line, or the touching areas of lines and text; and the second one pre-
serves large DSCCs which are likely to be horizontal line segments. Similar conditions
hold for vertical lines except for the orientation angle. Fig. 3 shows some examples of
text filtering. We can see that most text strokes are filtered and the line segments are
preserved.
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3.2 Skew Angle Estimation

Our skew angle estimation is based on the line segments extracted. After filtering text
strokes, we merge the preserved DSCCs into longer line segments and use a two-step
coarse-to-fine method to estimate the skew angle. In the coarse estimation, we construct
a weighted angle histogram of all extracted lines as follows

Clear all entries of the histogram h
For each line 7 do

f; = orientation of line %

Weight w; = length of line i
End

The length of a line is used as the weight so the long lines can be emphasized. The angle
. with the largest count in the histogram is taken as the coarse estimate of the skew
angle. We refine the estimate further by performing projection along the angles within
a small range around 6., as shown in Fig. 4. The angle 0 maximizing the variance of the
projection is the refined estimate

0 =arg max }Var(h(y, 6)) (7)

0€[0:.—1.2° ,0.+1.2°

where h(y,#) is the projection along the skew angle . Experiments conducted on our
database containing 168 Arabic documents show the errors of coarse skew estimate are
within the range of [—1.16°,1.17°], and reduced to [—0.56°, 0.18°] after refinement. After
skew angle estimation, the skew distortion is corrected before we perform horizontal or
vertical projection.

4 HMM Model-Based Parallel Line Detection

In the following description, we use horizontal line detection as an example to illustrate
the proposed method. The extension to vertical line detection is straightforward. A
stochastic model, M(y1,ys, ..., yn), is proposed for a group of parallel lines, where N is
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the number of lines, and y;,7 = 1,2,..., N is the vertical position of the i line. The
line gap g; between two neighboring lines ¢ and ¢ 4+ 1 is defined as

9i = Yiv1 — Yi (8)

As we show later, the line positions {y;,i = 1,2,..., N} form a Markov chain if the
variations in line gaps are independent. As they are not observable in the projection
profile, a HMM model is more suitable for modeling the profile. The line positions can
be detected by decoding the HMM model.

4.1 Markov Chain

The Markov property of a sequence of events is well studied in the literature [27]. Consider
a system that stays at one of a set of N distinct states, S, 5,..., Sy, at any sampling
time ¢. It undergoes a change of state according to a set of probabilities associated with
the state during the period between two successive sampling times. For a Markov chain
(the first order), the probability of staying at state ¢; only depends on the previous state

qi—1
P[Qt - Sk,g|‘]t—1 - Sktfp di—2 = Skt72) 01 = Skl] - P[Qt = Skt|Qt—1 — Skt,l] (9)

If the state transition probability is independent of time ¢, then the Markov chain is said
to be homogeneous
Plgg = Sjlgp1 = Si] =a;; 1<4,j<N (10)

We can show that line positions {Y;,7 = 1,2,..., N} form a Markov chain, if the
variations in line gaps are independent. Here we use uppercase characters to represent
random variables (e.g. Y;) and lowercase characters to represent the value of the random
variables (e.g. v;).

Theorem 1: Let Y;,7 = 1,2,..., N be line positions, and G; = Y;;; — Y;,1 =
1,..., N — 1 be line gaps. If {G;} are independent, then {Y;} form a Markov chain.

P(Yi[Y1,Ys,...,Yi) = P(Yi]Yi1) (11)

Proof:

P(}/;'D/la}/?:"w}/;fl) - P(Gi71+}/;71|}/17}/27"'7}/;71)
= P(Gz‘—1|Yl;Y2:---;Y;—1)
= P(Gi—1|G1,Ga, ..., Gig, Y1) (12)

Since, {G,;} are independent, we have

P(YiY1,Ys, ..., Y1) = P(Gia|Yi)
P(Gio1 + YialYio)
— PV ) (13)
Therefore, {Y;} form a Markov chain.
In random process, {Y;} is called an independent increment process, which includes

several well known random processes, e.g. Brownian motion process, Poisson process,

ete [7].



4.2 HMM Model

In many applications, the actual state sequence is not observable. The resulting model
(which is called a hidden Markov model) is a doubly embedded stochastic process with
an underlying stochastic process that is not observable, but can only be observed through
another stochastic process that produces the sequence of observations. The elements of
a standard discrete HMM model are

1) N, the number of the states in the model.

2) M, the number of distinct observation symbols per state.

3) A= {a;;}, the state transition probability matrix.

4) B = {b;;}, the probability distribution matrix of the observation symbols.

5) m, the initial state distribution.
HMM models can model some 1-D signals well, and have achieved great success in speech
[27] and handwriting recognition [26].

In our application, we can only observe the projection profile hy

P(Hy = hg|3i,k =y;) Alineison k
P(Hy = hy|Vi, k # y;) No lines are on k
(14)

Therefore, the projection profile can be modeled with a HMM model. A standard HMM
model is shown in Fig. 5a, where Sp and Sp are the states representing top and bottom
image borders, S ;,¢ =1,2,..., N represent lines, and S ;,7 =1,2,..., N —1 represent
the line gaps between lines 7 and 7 + 1.

One weakness of conventional HMMs is the modeling of state duration. The inherent
duration probability distribution p;(d),d = 1,2,..., associated with state Sg, is

pi(d) = (az)"' (1 — ai) (15)

P(Hk:hk|Y1:y1,...,YN:yN):{

where a;; is a self transition probability. The exponential state duration distribution
is inappropriate for our applications. Instead we explicitly model the duration dis-
tributions. The model with explicit state duration is shown in Fig. 5b, where the
stochastic property of the model is incorporated into the state duration distributions
Pr(d), Pg(d), Pi(d),i =1,2,..., N — 1. For some applications, the quality of the model-
ing is significantly improved when explicit state duration distributions are used [19].

4.3 HMM Model Parameter Estimation

The major drawback of an explicit duration HMM model is that it significantly increases
computational costs for model training. With a traditional forward-backward training
algorithm (a type of EM algorithm), the re-estimation problem for a variable duration
HMM is more difficult than that for a standard HMM [27]. Fortunately, in our case,
we can directly get the HMM parameters from groundtruth since the states explicitly
correspond to image components. Therefore, the forward-backward training algorithm
is not needed. We set duration probabilities of states S; and Sg to uniform distribution
within a range. The duration probabilities of states S ;,¢ = 1,2,..., N —1 are estimated
directly from the groundtruth.

10
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Figure 5: HMM models for a projection profile. (a) A standard HMM model; (b) a HMM
model with explicit state duration.

The observation comes from the projection profile {h;}. The large number of ob-
servation symbols would prevent us from estimating the model parameters reliably with
limited training samples. There are two methods to reduce the number of parameters of
the model. One is to model the distribution of the observation as a Gaussian distribu-
tion [27], so only the mean and variance of the Gaussian distribution are needed to be
estimated. For known form processing, we find the projections of a line over multiple
form instances can be well modeled as a Gaussian distribution. Another method quan-
tizes the projection profile into several levels. For rule line detection, the image quality
varies significantly among different images. The distribution of the observation does not
follow the Gauss distribution. Therefore, we quantize hy into K levels (K = 5 in our
experiments for rule line detection). The probabilities of each level can be estimated
from the groundtruth.

The HMM parameters estimated directly from the groundtruthed data set are not
optimal due to the sparseness of the training data. For example, some entries of the
line gap distribution in Table 1 do not appear or only appear a few times. Parame-
ter sharing, a technique used in Neural Network to train the parameters with limited
training samples [18, 28], is used in our approach. For example, we let non-line states
St,58,5G,1,---,59¢n-1 share the same observation probability distributions since the
observations of these states are the same: the projections of noise and remaining text
strokes after filtering. For rule line detection, we further combine all line states into
one state, and all non-line states into another state, which significantly reduces the pa-
rameters of the model. For line gap distribution estimation, we assume the distribution
is symmetric around the mean value. Therefore, data smoothing techniques, originally
proposed in natural language processing [15], can be used

C(gi +k)+C(gi — k)

C'(gi+k)=C'(gi— k) = 5

k=1,2,... (16)

where g; is the mean value of line gap G;, C(k) is the number of instances of G; with
value k in the training set, and C’(k) is the smoothed result after imposing symmetric

11



regularization. Finally, we set the empty entries to the minimal value of all non-zero
entries. Suppose the maximal variation of the line gap G; is K. For k € [—K, K|, the
final smoothed result is

C'(g; + k) if C'(Gi+ k) £0

) _ N ” 17
min,e[— g, k],07(gi+i)20 C'(Gi +14) i C'(gi+ k) =0 17)

C"(g: + k) = {
C"(k) can be converted to probability by normalization. We will illustrate the data
smoothing with examples in the following section.

The ultimate goal of training is to search the optimal HMM model parameters to
minimize the line detection error. The estimated parameters from the training data can
produce reasonable results, however they do not minimize the line detection error rate.
Generally the error criterion is a very complex function of the model parameters without
a closed form. A direct searching algorithm can be used to solve such optimization
problems. In our case, the simplex search method proposed by Nelder and Mead is used
to minimize the detection error [25].

4.4 Decoding of the HMM Model

Given the observation sequence O = hy,k=1,2,...,7, and the HMM model )\, we
want to search an optimal state sequence Q) = ¢1¢s . .. qr to maximize P(Q|O, \), which
is equivalent to maximizing P(Q,O|)). Normally, the Viterbi algorithm, a dynamic
programming method, is used to decode HMM models. A matrix v with dimension
T x (N +1) is defined and updated in the Viterbi algorithm, and

v(t,n) = a.oax Plg1, G2, - -Gt = Spn, hiy hay - oo Byl Al (18)
is the best decoding score at time ¢, which accounts for the first ¢ observations and ends
in state Sz, ,,. The sequence ¢, ¢o, . . ., ¢ maximizing the probability in Eq. (18) is the
best decoding result until time ¢ if we decode state ¢, as the n'® line.

Suppose the minimal and maximal state durations of states S, are d,— and d,, and
the durations of S and Sp are uniformly distributed in [0, d7] and [0, dg], respectively.
The complete procedure of decoding is stated as follows

1. Clear all entries of matrix v.

2. For 1 < i < ép, decode the first ¢ — 1 observations as Sy (the top image border)
and observation ¢ as Sp, ;

i—1

P(hilg; = Sp.1) [ P(hylg; = Sr), (19)

_5T+1 =1

v(i, 1)

where P(h;|g; = Sp1) is the probability of observing h; if the system enters state
Sp,1 at time ¢ H;;ll P(hjlg; = Sr) is the probability of observing the first ¢ — 1
observations if the system stays at state Sy during the time period from 1 to ¢ — 1;
and Mlﬁ is the probability of the model staying at St for ¢ — 1 consecutive periods.
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3. Set t =1.

4. Forn=1to N
For j =0, to 0,4

tj—1

V(t+4,n) = v(t,n)Py(§)P(hivjlair; = Spnt1) H P(hilge = San) (20)
k=t+1

o(t+4,n) = max{v(t+j,n), v'(t+j,n)} (21)

End loop of j

End loop of n

Here P,(j) is the probability of staying at state S, with j consecutive times;
P(hi+j]qi+j = Spm+1) is the probability of observing observation f,; if the system
enters Sy, 11 at time ¢+ j, which corresponds to a new line; and Hf:;]tjrll P(hi|gx =
Scn) is the probability of observing sequence h;q to hyy;_ if the system stays
at state Sg, during this time period, which corresponds to a line gap. Eq. (21)
updates the optimal partial detection result.

5. If t > T — 0, decode the following sequence as the bottom image border.

UI(T,N +1) = w(t, N)(53 1 kH P(h|qr = Sp) (22)
v(I,N+1) = max{v(T,N+1), o/(T,N +1)} (23)

6. If t <71 then t =1+ 1, and go to step 4.

For each t, the algorithm remembers the best decoding path until time ¢. After
decoding,
v(I,N+1) = mQaXP(Q,O|)\) (24)

is the probability of detecting lines given the model, which can be regarded as detection
confidence. The sequence ¢, ga, . . ., g which achieve v(T, N +1) is the optimal decoding
result.

4.5 Polyline Representation

After identifying the vertical position of a line, our next step is to detect the left and
right end points by grouping the broken line segments together. For each detected line,
those DSCCs within 10 pixels distance to the detected line are merged [35]. Those lines
with less than 50 pixels are removed.

An ideal straight line can be represented with two parameters ¢ and b as y = a x x+b.
Practically, a real line is represented with points (z;,v;),7 = 1,2,...,n. The parameters
a and b can be estimated based on the minimum mean squared error criterion (MMSE)

:T::sz/n y:Zyi/n
i1 i—1
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ez —2)(y —9)
i1 (v — )2
b=y—axz (25)

a =

For most straight lines, this approximation is good enough. However, due to the dis-
tortion introduced by photocopying and scanning, some lines are cursive, and can not
be represented by two end points well. In this case, a polyline representation is used as
follows

1. Calculate the average approximation error of a line
dy; = |yi—axx;— b (26)

e = anéyi/n (27)

2. If e is smaller than the average line width (often 2-4 pixels), keep it with two end
points representation, and exit.

3. Otherwise, split the whole line into two segments from the middle, and estimate
the line parameters a and b for each segment respectively, as described in Eq. (25).

4. For each segment, go to step 1 and repeat.

A polyline is described as a sequence of vertices (P, Py, ..., P,). Two or three segments
are sufficient to represent most lines in our following experiments.

5 Applications

5.1 Known Form Processing

The application of the algorithm to known form processing is straightforward. Generally
there are a group of horizontal and vertical parallel lines respectively on a form. There-
fore, we use two HMM models to detect the horizontal and vertical lines separately. To
apply the algorithm, we need to estimate two sets of parameters: 1) The distribution
of the observation symbols of each state (B matrix in Section 4.2); and 2) The state
duration probabilities of each state.

5.1.1 Estimation of the Distributions of Observation Symbols

In our case, the observation symbols are the projection profile, which is in the range
of [0,w] (where w is the width of the image). As we addressed in Section 4.3, a large
number of observation symbols would cause difficulties in estimating the distributions
reliably with limited training samples. Under some assumptions, we can show that using
the Gaussian distribution to model projections of a line over multiple form instances is
appropriate. In stochastic document image degradation models, a white (black) pixel is
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randomly selected and flipped to black (white) [16]. The projection is the summation of
all black pixels on the line

where

(29)

0 — 1 if black pixel 7 is preserved
1 0 if black pixel 7 is flipped to white during degradation

Under white Gaussian noise, a widely used model for degradation, a; follows a Bernoulli
distribution: a; ~ Bernoulli(p), where p is the probability for a black pixel to be lost.
Consequently, h follows a binomial distribution Bin(p, N)

P(h) = (]Z ) = ) (30)

According to the central limit law, if N is large enough (or if the line is long enough),
then the distribution of random variable h converges to a Gaussian distribution [7]

—F
lim h [h]

—————— — N(0,1) in distribution (31)
M=o /Np(1 = p)

In known form processing, generally, a set of forms are captured with the similar imaging
conditions. Therefore p is roughly consistent for each form instance in the set. So a
Gaussian distribution is a good approximation for the projections of a line over multiple
form instances. The mean and variance of the Gaussian distribution can be estimated
from the groundtruth. Figs. 6a to 6f show the distributions of the projections of all
six horizontal lines on a set of bank deposit forms with one instance shown in Fig.
la. The histogram is generated over 100 form samples. We can see that the Gaussian
distribution is a good approximation. For non-line states, the approximation is not good
enough since a projection is always larger than zero, as shown in Fig. 6g. But we found
in the experiments that the affect of this approximation error is negligible for the final
line detection result.

5.1.2 Estimation of the State Durations

The state duration of Si;,7 = 1,2,..., N —1, represents the line gap between lines 7 and
t + 1, which can be estimated from the groundtruth. Table 1 shows the distribution of
the gap between the first and second horizontal lines on the bank deposit form in our
database with 100 samples. The average value of the gap is 94 pixels. The row of distance
lists the difference to the average value. The row of raw occurrence shows the number
of occurrences the gap takes a specific value. We can see that the variation is from -9
pixels to 6 pixels, and the distribution is roughly symmetric around the average value.
Due to the sparse data problem, some entries within the range of [-9, 6] are not observed
in the training set, which will deteriorate the performance. Therefore, data smoothing is
used. The row of symmetric reqularization is the result after we impose the symmetry
(Eq. (16)). At last, we set the zero entries to the minimal value of all non-zero entries, as
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Figure 6: The distributions of the observation symbols (horizontal projections) for 100
scanned instances of a bank deposit form. One example of the form is shown in Fig. 1a.
There are six horizontal lines on the form. (a) to (f) the histograms of the projections
of six horizontal lines respectively; (g) the histogram of the projections of the non-line
states.

Table 1: The distribution of the line gap between the first and second horizontal lines on
a bank deposit form. The average is 94 pixels. The row of distance lists the difference
to the average value.

Distance 9 8 [ 7] 6] 5 [ 4 3 [ 2 [ -1 0 T ]2 3 1 5 16 [ 7] 8 [ 09
Raw Occurrence | 1 0 2 0 0 3 5 12 | 18 | 24 | 16 | 6 B 1 0 T 0] 0O
Symmetric 5| 0 1 5| 0|35 |65 9 17|24 |17 |9|65 350 |.5]|1]0].5

Regularization

Zero-Occurrence | 5 | 5 1 5| .5 |35 | 6.5 9 17 |24 |17 |9 |65 35| .5 .5]|1]|.5]|.5
Smoothing

shown in the row of zero-occurrence smoothing. After data smoothing, the distribution
P (d) can be estimated by normalization. Similarly, we can get the distributions of other
line gaps.

5.1.3 Decoding

After estimating parameters, we use the Viterbi algorithm described in Section 4.4 to
decode the observation. Fig. 7 shows the decoding results of the Viterbi algorithm
on the horizontal and vertical projection profiles of the bank deposit form (Fig. 1a).
The locations picked up by the Viterbi algorithm are labeled with red squares. We can
see that instead of picking the highest peaks as detected lines in the projection based
methods [2,21], our approach outputs the line positions which are most compatible with
the model.

After detecting the horizontal and vertical lines, the method described in Section
4.5 can be used to determine the end points of the lines. However, if a line is severely
degraded, the end points can not be determined accurately. In form processing, the cross
points of horizontal and vertical lines can be used to determine the end points. Short lines
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Figure 7: The lines detected after decoding the HMM models using the Viterbi algorithm
on the horizontal (a) and vertical (b) projection profiles of the bank deposit form. The
original form is shown in Fig. la. The locations picked up by the Viterbi algorithm
are labeled with red squares. We can see that instead of picking the highest peaks as
detected lines in the projection based methods, our approach outputs the line positions
which are most compatible with the model.

lying on the same line (i.e., three dotted lines in the middle of the form, as shown in Fig.
la) are merged as one line in the HMM model. After detecting all lines, each individual
lines can be obtained using the geometric relationship of the end points to other lines.
Fig. 1c shows the model based line detection result. We can see our method can even
detect the short lines which do not form peaks on the projection profile (especially for the
two shortest vertical lines) which are most likely missed by other methods, such as the
Hough transform or projection based methods. Our method outputs the exact number
of lines indicated by the model without false alarms. Fig. 8 shows two more examples
of an export registration form used by the Customs Bureau of China and a portion of a
U.S. income tax return form.

Another advantage of our HMM based form processing approach is that it can be
extended for form identification easily. Suppose there are n form templates Aj, Ao, ..., A,.
According to the Bayesian rule, A which maximizes the posteriori probability is selected
as the template for the input form

A =arg max P(\|O) = arg max P(O|N)P(N\) (32)

where O is the observation (the projection profile in our method), P();) is the priori
probability of form template \;, and P(O|)) is the probability of observing the sequence
of observations given the model, which can be calculated efficiently with the forward
algorithm [27].
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Figure 8: Some examples for model-based form frame line detection. (a) and (b) An
export registration form used by the Customs Bureau of China and the corresponding
line detection result. (c) and (d) A portion of a U.S. income tax return form and the
corresponding line detection result. Red color shows the detected lines.

5.2 Rule Line Detection

In this section we use the method to detect severely broken rule lines. Different from
the previous case, the number of lines is unknown, and the vertical line gaps may vary
in different images due to the different style of the rule lined paper, or different scanning
resolutions. However the length of lines and the vertical line gaps are roughly consistent
in the same document image.

5.2.1 Vertical Line Gap Estimation

We need to estimate the average vertical line gap from the input image first. Since the
line gaps between neighboring lines are roughly the same, the horizontal projection of rule
lines is a periodic signal (the period is the average vertical line gap g). We use an auto-
correlation based approach to estimate the period of the projection. The auto-correlation

of a signal =, with n samples (1), z(2),---,x(n), is defined as
n—I{
R(l) =Y z(i)z(i+1) 1=0,1,...,n—1 (33)
i=1

The distance between the first two peaks of the auto-correlation is taken as the vertical
line gap, as shown in Fig. 9.

To show the accuracy of the method, we compare the estimate with the actual vertical
line gap of the groundtruthed lines. The page level estimation error is defined as the
average of the estimation errors of all vertical line gaps on a document page. For 168
images in our database, most page level estimation errors are within 0.5 pixels. The
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Figure 9: Vertical line gap estimation for rule line detection based on the auto-correlation
of the projection profile.
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Figure 10: A simplified HMM model for rule line detection.

maximum page level estimation error is 1.3 pixels due to the large vertical line gap
variance.

5.2.2 A Simplified Model

In order to reduce the complexity of the model (the number of states and parameters),
we further simplify it by considering the special properties of rule lines. Since the vertical
line gaps and the lengths of rule lines are roughly consistent in the same document image,
we can merge states Sg;,¢ = 1,2,..., N — 1 into one state Sg, and S ;,7=1,2,...,N
into another state Sy. The simplified model is shown in Fig. 10. State merging reduces
the number of parameters significantly. Another advantage of such simplification is that
we do not need to explicitly know how many lines are on a document.

5.2.3 Parameter Estimation

In our data set, the quality of different images are significantly different from each other.
And the degradation of rule lines are different on the same image too. Therefore, we can
not use the Gaussian distribution to model the projections of rule lines (the mixed Gaus-
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Table 2: Observation probability distribution matrix B estimated from the training set
containing 100 documents

0 1 3 4
Non-peak | (0,7%] | ({5, %] | (§,%] (3wl
s 106 246 378 1,051 493
L (4.7%) | (10.8%) | (16.6%) | (46.2%) | (21.7%)
191,086 2,052 170 58 15
S1:58,5G | (98.8%) | (1.1%) | (0.1%) | (0.03%) | (0.008%)

sian distribution may be a good approximation). Instead, we quantize the observation
into several levels, and estimate the probability of each quantized level directly from the
groundtruthed data set. Peaks on the projection profile are of particular significance for
line detection. Therefore, we first set all non-peaks on the profile to zero, then quantize
the peaks on the projection profile into four levels using the following quantization levels:
w/16,w/8, and w/4, where w is the image width. The observation probability distri-
bution matrix B, estimated from the training set containing 100 documents, is listed in
Table 2. Here, we let states St, Sp, and Sg, whose observations are the projection of
text or noise, share the same observation distribution. We observed that 1) due to the
severe brokenness, the horizontal projections of about 80% rule lines are less than 1/4
of the image width; 2) 4.7% rule lines do not form peaks; and 3) the peaks with small
heights are more likely formed by text strokes or noise (2,052 instances), rather than by
rule lines (246 instances). Therefore we need to use high level contextual information to
achieve reasonable detection results for these severely broken lines.

We set duration probability of states Sy and Sp to the uniform distribution on [0, g —
1]. The duration probability of state Sg is estimated directly from the groundtruth
with the same method discussed in Section 5.1.2. With all these settings, the rule line
detection accuracy on the training set is about 95.6%. For comparison, the accuracy is
only 91.7% if we use the Gaussian distribution to approximate the observation. Since the
parameters estimated from the training data are not optimal for the ultimate detection
error criterion, the simplex method proposed by Nelder and Mead [25] is used to search
the optimal parameter set which minimizes the detection error. Among parameters of
our model, we only optimize the observation probability matrix B. Experiments show
the detection accuracy increases to 97.3% on the training set after optimization.

5.2.4 Examples

Fig. 1f shows the model-based line detection result for a rule lined document. Compared
with Fig. 1le, we can see that with contextual information the result is significantly
improved. Our model-based method is very robust even when the input images do not
follow the model exactly. Fig. 11 shows an example: two pages are overlapped during
scanning. Our algorithm still detects all rule lines correctly. In Fig. 12a, we remove
35 rows of the image (about half of the average vertical line gap of this document).
The variation of the line gap is out of the range allowed by the HMM model. The
corresponding detection result is shown in Fig. 12b, with only one line missed due to the
anomalous vertical line gap.
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Figure 11: (a) The original image with two pages overlapped during scanning; (b) the
corresponding line detection result.

(b)

Figure 12: An example of a model mis-match. (a) A document image with 35 image
rows removed; (b) the corresponding line detection result.

6 Experiments

In this section, we quantitatively evaluate the robustness of our line detection algorithm,
and compare it with several non-model-based algorithms. We present our evaluation
metrics in detail first.

6.1 Line Detection Evaluation Protocol

Line detection accuracy can be evaluated at the pixel level and the line level [23]. At pixel
level we compare the difference of the pixels between groundtruthed and detected lines.
It is straightforward and objective, but groundtruthing at the pixel level is extremely
expensive when lines are broken, distorted and/or overlapped with text. Therefore, we
evaluate the algorithm at the line level. Our evaluation metrics is based on the Hausdorff
distance. The Hausdorff distance between two point sets is

H(A, B) = max{h(A, B), h(B, A)} (34)
where
h(A, B) = maxmin ||a — b|| (35)
ac€A beB

and ||.|| is an underlying norm (e.g., the Ly or Euclidean distance). The function h(A, B)
is called the directed Hausdorff distance from A to B. It identifies the point a € A that is
the farthest from any point of B and measures the distance from a to its nearest neighbor

21



Figure 13: Hausdorff distance between two polylines.

in B [12]. The direct computation method for the Hausdorff distance is time consuming.
However, for polyline representation, the Hausdorff distance can be easily calculated.
Suppose polylines A and B are represented as a sequence of vertices (A;, Ag, ..., An)
and (By, By, ..., B,) respectively, then the Hausdorff distance is simplified as

H(A, B) = max{H'(4, B),e(4, B)} (36)

where
HI(A,B) = maX{DAl,DAz,...,DAm,DBl,DBz,...,DBn} (37)
e(A,B) = max{|[4 — B[, [[An — Ball} (38)

D ,; is the perpendicular distance from A; to polyline B, and Dgp; is the perpendicular
distance from B; to polyline A, as shown in Fig. 13. H'(A,B) in Eq. (37) is the
perpendicular distance between two polylines A and B, which evaluates the accuracy in
determining the vertical location of a horizontal line and the horizontal location of a
vertical line. ||A; — Bj|| is the Euclidean distance between points A; and B;. Suppose
the vertices of a polyline are sorted from left to right for a horizontal line, and top to
bottom for a vertical line. Then ||A; — By|| and ||A,, — B,|| are the end point distances.
Hausdorff distance H(A, B) in Eq. (36) combines perpendicular distance and end point
distance into one metric.

For severely broken lines, however, it is very hard to define the end points exactly.
Therefore, we prefer to use two separate metrics: perpendicular distance and end point
distance for evaluation, instead of a combined Hausdorff distance.

The absolute value of the end point distance is not suitable for evaluating both short
and long lines. As a supplemental metric, the overlapping rate of polylines A and B

min{A4,,, B,} — max{A,, B}
max{A,,, B,} —min{A,, B}

o(A,B) = (39)
is defined to evaluate the relative end point determination error.

For evaluation, we need to find the one-to-one correspondence between the detected
and groundtruthed lines first. The method proposed in [20] is used to find such correspon-
dence. Suppose the detected lines are Lq;,7 = 1,2, ..., m, and the groundtruthed lines are
Lyj,7=1,2,...,n. We want to find an optimal one-to-one mapping F': {Lq;} — {L,,},
such that

Z diSt(Ld,Z‘, Lg,F(z)) (40)
7
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Figure 14: Histogram of the distances of groundtruth rule lines to the corresponding
detected lines.

is minimized. The distance is the Hausdorff distance defined above. The optimal mapping
can be achieved efficiently using the Hungarian algorithm [20]. For line detection, a
correctly detected line should not be far away from its corresponding groundtruthed line.
Let D,,.. be the threshold of the maximal tolerable localization error. The optimal
matching problem in Eq. (40) is converted into a constrained optimization problem

diSt(Ldyi, Lgyp(z)) S Dmax for i = 1, 2, ., (41)

If the numbers of detected and groundtruthed lines are not equal, we add some dummy
lines Lgymmy, such that

dist(La;, Laummy) = Dmes fori=1,2,....,m
dist(Laummy, Lgj) = Dmpmes forj=1,2,....n (42)

The missed groundtruthed lines and the falsely detected lines can be matched to the
dummy lines. If the distance of a pair of matched lines is less than D,,;,, then the line
is correctly detected; otherwise it is partially detected with a large location error. As
suggested in [17], we set D, = 5 and D, = 10 pixels respectively.

6.2 Evaluation of Rule Line Detection

We obtained 168 Arabic document images with a total of 3,870 groundtruthed rule lines,
most of which are severely broken. We use 100 images to train the HMM model, and the
remaining 68 images as the test set. The detection results are shown in Table 3. On the
test set, 96.8% lines are detected correctly and only 2 lines are missed. The histogram
of the distances for all matched pairs is shown in Fig. 14. We can see that most of
the detected lines (more than 90%) match the corresponding lines within 3 pixels. The
false alarm rate is about 2.3%. Most of the false alarms are caused by the inconsistency
between the detector and the subjective judgment of the groundtruther when lines are
severely broken.

For correctly detected lines we evaluate the end point determination accuracy using
the end point distance and overlapping rate defined in Eq. (38) and (39) respectively.
The average end point distance is 6 pixels and the overlapping rate is 99.1%.

For comparison, we compared our model-based line detection algorithm with other
non-model-based line detection algorithms: the Hough transform method, the projection
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Table 3: Quantitative evaluation of the rule line detection result.

| Groundtruthed Lines | Detected Lines | Correct | Partial Correct | Missed [ False Alarm |
Training Set 2,274 2,310 2,212 (97.3%) 56 (2.5%) 6 (03%) | 51 (2.2%)
Test Set 1,596 1,631 1,545 (96.8%) 19 (3.0%) 2 (0.1%) | 37 (2.3%)

Table 4: Comparison of our model-based method with other methods on the test set

(there are a total of 1,596 groundtruthed lines).
| | Detected Lines | Correct | Partial Correct |  Missed [ False Alarm |

Hough Transform 1,747 1,354 (84.8%) 113 (7.1%) 129 (8.1%) 280 (17.5%)
DSCC 3,162 1,398 (87.6%) 118 (7.4%) | 80 (5.0%) | 646 (40.5%)
Projection Method 1 1,060 1,384 (86.7%) 17 (73%) | 95 (6.0%) | 468 (29.3%)
Projection Method 2 1,387 1472 (92.2%) 77 (4.8%) 17 (2.9%) | 2,838 (177.8%)
Our Model-Based Method 1,631 1,545 (96.8%) | 49 (3.0%) 2 (0.1%) | 37 (2.3%)

based method, and the DSCC method. The line detection results on the test set with
different algorithms are shown in Table 4. To reduce the false alarm rate of the Hough
transform method, we restrict the search range of f around 0° after skew correction. For
any pair of detected lines which are too close to each other, we remove the one with
fewer black pixels. The accuracy of the Hough transform method is about 84.8%. Two
variations of the projection method are implemented and compared. Projection methods
1 and 2 in Table 4 correspond to with and without close line removal respectively. We
can see that without close line removal, the accuracy is as high as 92.2%, but the false
alarm rate is also very high (177.8%). Close line removal significantly reduces the false
alarm rate to 29.3%, but the accuracy drops to 86.7% as well. For the DSCC method,
we restrict the merging direction to the horizontal direction. Since two DSCCs can be
merged only when their heights are compatible [35], the false alarm rate of the DSCC
method is much lower than the projection and Hough transform methods without close
line removal. Therefore, we did not apply close line removal to the result of the DSCC
method. As expected, our model based method achieved much better results in both
accuracy and false alarm rate, due to the high level constraints between neighboring
lines used. We observed that our model-based method can achieve higher accuracy than
the projection method without close line removal, indicating that some severely broken
rule lines are detected successfully even when they do not form peaks on the projection
profile.

6.3 Evaluation of Known Form Processing

To evaluate the algorithm for known form processing, we scanned 100 bank deposit
forms with reasonable image quality. We found in the experiment that only a few training
samples are needed to achieve good result if the image quality is reasonable. We randomly
selected 5 samples for training, and found that all the detected lines are within 8 pixels
to the groundtruth without false alarms. Then we test the robustness of our method to
image degradations. We randomly flip a certain ratio of black pixels on lines to white,
and keep all pixels on text unchanged. Generally, the more severe the degradation is,
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Figure 15: Degraded form documents and the corresponding line detection results. Red
lines drawn on original images indicate the detected lines. (a) About 50% of the pixels of
the lines are flipped; (b) line detection result of (a); (¢) about 90% of pixels of the lines
are flipped; (d) line detection result of (c).

the more accurate the model should be in order to detect lines correctly. Therefore,
in the following experiments we increase the number of training samples. 50 forms are
randomly selected for training and the remaining 50 forms for testing. Figs. 15a and
15¢ show the degraded images with 50% and 90% black pixels on lines flipped to white.
As shown in Fig. 15b, the line detection result is perfect even half of the black pixels
are flipped. Fig. 15d shows that the horizontal lines are still detected correctly even
when 90% black pixels are flipped, but the vertical lines are misdetected. The detection
accuracy vs. degradation on the test set is shown in Fig. 16. We can see that our method
is very robust. It maintains good results with accuracy of 96.2% even when 80% black
pixels of lines are flipped.

Our method is fast. The average processing time for an image with the size of

Detection accuracy (Percentage)
@
&

o 01 02 03 0.4 0s 06 o7 08 09 1
Ratio of black pixels fipped

Figure 16: Line detection accuracy vs. ratio of black pixels flipped on lines.
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1,700x 1,800 pixels is about 0.4 seconds on a PC with 1.8GHZ CPU and 1GB memory.
Most of the computation is spent on the preprocessing, such as skew angle estimation
and correction.

7 Conclusion and Future Work

In this paper we present a novel approach to detect severely broken parallel lines in doc-
uments. Our method is based on a stochastic model to incorporate high level constraints
into a general line detection algorithm. Instead of detecting lines individually, we use
the Viterbi algorithm to detect all parallel lines simultaneously. Our method can detect
96.8% severely broken rule lines in the Arabic database we collected. Some challenging
examples demonstrated the robustness of our approach. For known form processing, it
can achieve good results even when about 80% black pixels on lines are flipped to white
during degradation.

Our method can be extended for form identification easily. The probability of observ-
ing a sequence of observations given the model, which is useful for form identification,
can be calculated with the forward algorithm efficiently. We are currently incorporating
the method into a known form processing system for both form identification and reg-
istration. Our next focus is to develop a robust line removal algorithm to enhance the
image quality of documents.
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